

High-Frequency, 3rd Overtone Crystal Oscillator Module ICs

OVERVIEW

The CF5020 series are high-frequency, 3rd overtone crystal oscillator module ICs. They incorporate an oscillator circuit and an output buffer that operate at high frequency on a single chip. The oscillator circuit employs CMOS inverters and a built-in damping resistor R_D , reducing the crystal current compared with existing devices. The damping resistor R_D is fabricated using NPC's unique high-precision thin-film resistor technology, which suppresses oscillator characteristic variations due to changes in temperature and voltage to a minimum. The CF5020 series can be utilized to construct stable, high-frequency, 3rd overtone crystal oscillators.

FEATURES

- R_D built-in to reduce crystal current in the oscillator circuit
- 2.25 to 3.6V operating supply voltage range
- Recommended operating frequency range (varies with version)
 - 2.5V operation: 60 to 155MHz3.0V operation: 60 to 170MHz
- -40 to 85°C operating temperature range
- Oscillator capacitors with excellent frequency response built-in
- Feedback resistors with good temperature characteristics built-in

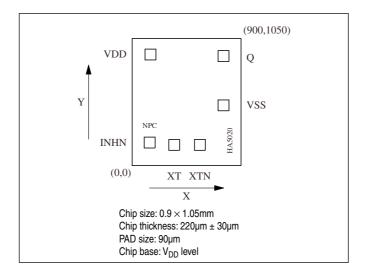
- Standby function
 - High impedance in standby mode, oscillator stops
- Low standby current
 - Power-saving pull-up resistor built-in
- Oscillation detector function
- CMOS output duty level (1/2VDD)
- $50 \pm 5\%$ output duty (at 1/2VDD)
- 30pF output load (3.3V operation)
- Molybdenum-gate CMOS process
- Chip form (CF5020AL×)

APPLICATIONS

Crystal oscillator modules (3rd overtone oscillation)

SERIES CONFIGURATION

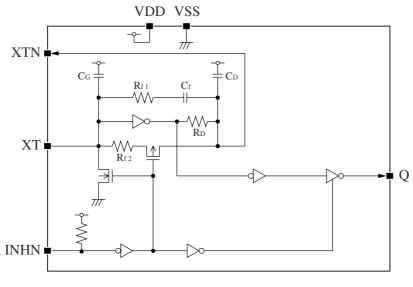
Version 2	Recommend	ed operating		Oscilla	tor circuit o	INHN	Standby mode			
	frequency ra	frequency range ^{*1} [MHz]		Built-in capacitance		l	Damping	input	Oscillator	Output
	2.5V operation	3.0V operation	gm ratio	C _G [pF]	C _D [pF]	resistance Rf [kΩ]	resistance R_D [Ω]	level	stop function	state
CF5020ALA	60 to 80	60 to 90	0.6	4	7	2.5	200			
CF5020ALB	70 to 115	80 to 125	0.8	3	3	4.5	57	CMOS	Yes	High
CF5020ALC	105 to 135	115 to 145	1.0	1	3	3.3	57	CIVIOS	162	impedance
CF5020ALD	110 to 155	135 to 170	1.0	1	5	2.2	57			


^{*1.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

ORDERING INFORMATION

Device	Package
CF5020AL×-2	Chip form

PAD LAYOUT


(Unit: µm)

PIN DESCRIPTION and PAD DIMENSIONS

Nome	Name I/O		Description				
Name	1/0		Description	Х	Υ		
INHN	I	Output state control input. Power-saving pull-up resis	High impedance when LOW (oscillator stops). stor built-in.	144.6	190.6		
XT	I	Amplifier input	Crystal connection pins.	347.8	171		
XTN	0	Amplifier output	Crystal is connected between XT and XTN.	560.6	171		
VSS	-	(–) ground		755.4	497.8		
Q	0	Output	Output				
VDD	-	(+) supply voltage		151.4	918.2		

BLOCK DIAGRAM

INHN = LOW active

SPECIFICATIONS

Absolute Maximum Ratings

$$V_{SS} = 0V$$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		-0.5 to +7.0	V
Input voltage range	V _{IN}		-0.5 to V _{DD} + 0.5	٧
Output voltage range	V _{OUT}		-0.5 to V _{DD} + 0.5	٧
Operating temperature range	T _{opr}		-40 to +85	°C
Storage temperature range	T _{STG}		-65 to +150	°C
Output current	I _{OUT}		25	mA

Recommended Operating Conditions

CF5020ALA, CF5020ALB

3V Operation

$$V_{SS} = 0V$$

Parameter	Symbol	Cons	Condition		Rating			
raidilletei	Syllibol	Condition		min	typ	max	Unit	
Operating supply voltage range	V _{DD}	f ≤ 125MHz	C _L ≤ 15pF	2.7	-	3.6	V	
			C _L ≤ 30pF	3.0	-	3.6	V	
				2.7 ^{*1}	-	3.6 ^{*1}	V	
Input voltage range	V _{IN}			V _{SS}	-	V _{DD}	V	
Operating temperature range	T _{OPR}			-40	-	+85	°C	

 $^{{}^{\}star}\mathbf{1}.$ The output duty cycle variability increases than other conditions.

2.5V Operation

$$V_{SS} = 0V$$

Parameter	Combal	Condition				Unit	
Parameter	Symbol			min	typ	max	Oille
	V _{DD}	f≤106MHz	C _L ≤ 15pF	2.25	-	2.75	V
Operating supply voltage range		f≤70MHz	C _L ≤ 30pF	2.25	-	2.75	V
		f ≤ 125MHz	C _L ≤ 15pF	2.25 ^{*1}	-	2.75 ^{*1}	V
Input voltage range	V _{IN}			V _{SS}	-	V _{DD}	V
Operating temperature range	T _{OPR}			-40	-	+85	°C

 $^{^{\}star} 1.$ The output duty cycle variability increases than other conditions.

CF5020ALC, CF5020ALD

3V Operation

$$V_{SS} = 0V$$

Parameter	Symbol	Condition			Unit		
raiailletei	Syllibol			min	typ	max	J.III
One verting a complete self-age vange	V _{DD}	f≤170MHz	C _L ≤ 15pF	2.7	-	3.6	V
Operating supply voltage range		f≤125MHz	C _L ≤ 30pF	2.7	-	3.6	V
Input voltage range	V _{IN}			V _{SS}	-	V_{DD}	V
Operating temperature range	T _{OPR}			-40	-	+85	°C

2.5V Operation

$$V_{SS} = 0V$$

Parameter	Symbol	Cone	dition		Unit			
raiametei	Symbol	Condition		min	typ	max	J.III	
Operating supply voltage range	V _{DD}	f≤155MHz	C _L ≤ 15pF	2.25	-	2.75	V	
Input voltage range	V _{IN}			V _{SS}	-	V _{DD}	V	
Operating temperature range	T _{OPR}			-40	-	+85	°C	

Electrical Characteristics

2.5V operation

 $V_{\rm DD}$ = 2.25 to 2.75V, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

D	0		Candition			Rating		
Parameter	Symbol		Condition		min	typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1,	V _{DD} = 2.25V, I _{OH}	= 8mA	1.75	1.95	_	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 2,	V _{DD} = 2.25V, I _{OL} =	= 8mA	_	0.3	0.4	V
HIGH-level input voltage	V _{IH}	INHN			0.7V _{DD}	_	-	V
LOW-level input voltage	V _{IL}	INHN			-	-	0.3V _{DD}	V
Output leakage current		O: Maggurament act 2	INIUN – I OW	$V_{OH} = V_{DD}$	-	-	10	μA
Output leakage current	I _Z	Q: Measurement cct 2,	IINTIN = LOVV	V _{OL} = V _{SS}	-	-	10	μA
			CF5020ALA	C _L = 15pF f = 80MHz	_	15	40	mA
			OI JUZUALA	C _L = 30pF f = 70MHz	_	20	50	mA
Current consumption	I _{DD}	Measurement cct 3, load cct 1,	CF5020ALB	C _L = 15pF f = 106MHz	-	20	50	mA
Current consumption	טטי	INHN = open	OF GOZOTED	C _L = 30pF f = 70MHz	_	20	50	mA
			CF5020ALC	C _L = 15pF f = 135MHz	-	25	60	mA
			CF5020ALD	C _L = 15pF f = 155MHz	-	30	70	mA
Standby current	I _{ST}	Measurement cct 3, IN	easurement cct 3, INHN = LOW			-	3	μΑ
INHN pull-up resistance	R _{UP1}	Measurement cct 4			2	6	12	MΩ
INTIN pull-up resistance	R _{UP2}	Measurement cct 4	50	100	150	kΩ		
		CF5020ALA			2.12	2.5	2.88	kΩ
AC feedback resistance	R _{f1}	Design value. A monitor pattern on a wafer is tested. CF5020ALB CF5020ALC		CF5020ALB	3.82	4.5	5.18	kΩ
AO IEEUDACK TESISIANCE	' '11			2.80	3.3	3.80	kΩ	
			CF5020ALD			2.2	2.53	kΩ
DC feedback resistance	R _{f2}	Measurement cct 5			50	100	150	kΩ
				CF5020ALA	170	200	230	Ω
Oscillator amplifier output	R _D	Design value.		CF5020ALB	48.4	57	65.6	Ω
resistance	l uD	A monitor pattern on a	wafer is tested.	CF5020ALC	48.4	57	65.6	Ω
				CF5020ALD	48.4	57	65.6	Ω
AC feedback capacitance	C _f	Design value. A monito	or pattern on a wafe	er is tested.	8.5	10	11.5	pF
				CF5020ALA	3.40	4	4.60	pF
		Design value.		CF5020ALB	2.55	3	3.45	pF
	C _G	A monitor pattern on a	wafer is tested.	CF5020ALC	0.85	1	1.15	pF
Double for a garage?				CF5020ALD	0.85	1	1.15	pF
Built-in capacitance				CF5020ALA	5.95	7	8.05	pF
		Design value.		CF5020ALB	2.55	3	3.45	pF
	C _D	A monitor pattern on a wafer is tested. CF5020ALC		2.55	3	3.45	pF	
			CF5020ALD		4.25	5	5.75	pF

3V operation

 $V_{\rm DD}$ = 2.7 to 3.6V, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

Damamatan	Complete		O a maditi a m			Rating		Unit
Parameter	Symbol		Condition		min	typ	max	
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1,	V _{DD} = 2.7V, I _{OH} =	8mA	2.2	2.4	-	٧
LOW-level output voltage	V _{OL}	Q: Measurement cct 2,	V _{DD} = 2.7V, I _{OL} =	BmA	-	0.3	0.4	٧
HIGH-level input voltage	V _{IH}	INHN			0.7V _{DD}	-	-	٧
LOW-level input voltage	V _{IL}	INHN			_	-	0.3V _{DD}	٧
0.45.415.45.55.55		0.14.	INILIN LOW	$V_{OH} = V_{DD}$	-	-	10	μΑ
Output leakage current	I _Z	Q: Measurement cct 2,	INHN = LOW	V _{OL} = V _{SS}	-	-	10	μA
			CF5020ALA	C _L = 15pF f = 90MHz	-	20	50	mA
			OI 3020ALA	C _L = 30pF f = 90MHz	-	25	60	mA
			CF5020ALB	C _L = 15pF f = 125MHz	-	25	60	mA
Current consumption	I _{DD}	Measurement cct 3, load cct 1, INHN = open	OI SUZUALD	C _L = 30pF f = 125MHz		40	100	mA
		·	CF5020ALC	C _L = 15pF f = 135MHz	_	30	70	mA
			CF5020ALC	C _L = 30pF f = 125MHz	_	40	100	mA
			CF5020ALD	C _L = 15pF f = 170MHz	_	40	100	mA
Standby current	I _{ST}	Measurement cct 3, IN	leasurement cct 3, INHN = LOW			-	5	μΑ
INHN pull-up resistance	R _{UP1}	Measurement cct 4			2	4	8	$M\Omega$
in in pull-up resistance	R _{UP2}	Weasurement cct 4	50	100	150	kΩ		
	R _{f1}	CF5020ALA			2.12	2.5	2.88	kΩ
AC feedback resistance		Design value. A monitor pattern on a wafer is tested.		CF5020ALB	3.82	4.5	5.18	kΩ
AC leedback resistance				CF5020ALC	2.80	3.3	3.80	kΩ
				CF5020ALD	1.87	2.2	2.53	kΩ
DC feedback resistance	R _{f2}	Measurement cct 5			50	100	150	kΩ
				CF5020ALA	170	200	230	Ω
Oscillator amplifier output	_	Design value.		CF5020ALB	48.4	57	65.6	Ω
resistance	R _D	A monitor pattern on a	wafer is tested.	CF5020ALC	48.4	57	65.6	Ω
				CF5020ALD	48.4	57	65.6	Ω
AC feedback capacitance	C _f	Design value. A monito	or pattern on a wafe	r is tested.	8.5	10	11.5	pF
				CF5020ALA	3.40	4	4.60	pF
		Design value.		CF5020ALB	2.55	3	3.45	pF
	C_{G}		A monitor pattern on a wafer is tested.		0.85	1	1.15	pF
D 10.1				CF5020ALD	0.85	1	1.15	pF
Built-in capacitance				CF5020ALA	5.95	7	8.05	pF
		Design value.		CF5020ALB	2.55	3	3.45	pF
	CD	A manitar nattern an a wafer is tested		CF5020ALC	2.55	3	3.45	pF
				CF5020ALD	4.25	5	5.75	pF

Switching Characteristics

CF5020ALA, CF5020ALB

2.5V operation

 $V_{\rm DD}$ = 2.25 to 2.75V, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Cumbal	Condition			Unit		
raiametei	Symbol	Condition		min	typ	max	
Output rise time	t _{r1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1	3	ns
Output rise time	t _{r2}	0.1V _{DD} to 0.9V _{DD}	C _L = 30pF	-	2	5.5	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1	3	ns
	t _{f2}	0.9V _{DD} to 0.1V _{DD}	C _L = 30pF	-	2	5.5	ns
	Dutut		C _L = 15pF, f = 106MHz	45	-	55	%
Output duty cycle*1	Duty1	Measurement cct 3, load cct 1, V _{DD} = 2.5V, Ta = 25°C	C _L = 15pF, f = 125MHz	40	-	60	%
	Duty2		C _L = 30pF, f = 70MHz	45	-	55	%
Output disable delay time*2	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD}	= 2.5V, Ta = 25°C,	-	-	100	ns
Output enable delay time*2	t _{PZL}	C _L = 15pF		-	-	100	ns

^{*1.} The duty cycle characteristic is checked the sample chips of each production lot.

3V operation

 $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0$ V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Unit			
raiailletei	Syllibol	Condition	min	typ	max	Offic	
Output rise time	t _{r1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1	2.5	ns
	t _{r2}	0.1V _{DD} to 0.9V _{DD}	V _{DD} = 3.0 to 3.6V C _L = 30pF	-	1.5	3	ns
	t _{f1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1	2.5	ns
Output fall time	t _{f2}	0.9V _{DD} to 0.1V _{DD}	V _{DD} = 3.0 to 3.6V C _L = 30pF	-	1.5	3	ns
Output duty cycle*1	Duty2	Measurement cct 3, load cct 1, V _{DD} : C _L = 30pF, f = 125MHz	Measurement cct 3, load cct 1, V_{DD} = 3.0V, Ta = 25°C, C_L = 30pF, f = 125MHz			55	%
Output disable delay time*2	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD}	-	-	100	ns	
Output enable delay time*2	t _{PZL}	C _L = 15pF		_	_	100	ns

 $^{^{\}star}1.$ The duty cycle characteristic is checked the sample chips of each production lot.

^{*2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

^{*2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

CF5020ALC, CF5020ALD

2.5V operation

 $V_{\rm DD}$ = 2.25 to 2.75V, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition	Rating			Unit
		Condition	min	typ	max	Uill
Output rise time	t _{r1}	Measurement cct 3, load cct 1, 0.1V _{DD} to 0.9V _{DD} , C _L = 15pF	-	1	3	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1, 0.9V _{DD} to 0.1V _{DD} , C _L = 15pF	-	1	3	ns
Output duty cycle*1	Duty1	Measurement cct 3, load cct 1, V_{DD} = 2.5V, Ta = 25°C, C_L = 15pF, f = 155MHz	45	-	55	%
Output disable delay time*2	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD} = 2.5V, Ta = 25°C,	-	-	100	ns
Output enable delay time*2	t _{PZL}	C _L = 15pF	-	-	100	ns

^{*1.} The duty cycle characteristic is checked the sample chips of each production lot.

3V operation

 $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0$ V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Rating			Unit
	Symbol			min	typ	max	UIIIL
Output rise time	t _{r1}	Measurement cct 3, load cct 1, 0.1V _{DD} to 0.9V _{DD}	C _L = 15pF	-	1	2.5	ns
	t _{r2}		C _L = 30pF	-	1.5	4	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1, 0.9V _{DD} to 0.1V _{DD}	C _L = 15pF	-	1	2.5	ns
	t _{f2}		C _L = 30pF	-	1.5	4	ns
Output duty cycle*1	Duty1	Measurement cct 3, load cct 1, V _{DD} = 3.0V, Ta = 25°C	C _L = 15pF, f = 170MHz	45	-	55	%
	Duty2		C _L = 30pF, f = 125MHz	45	-	55	%
Output disable delay time*2	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD} = 3.0V, Ta = 25°C,		-	-	100	ns
Output enable delay time*2	t _{PZL}	C _L = 15pF		-	-	100	ns

^{*1.} The duty cycle characteristic is checked the sample chips of each production lot.

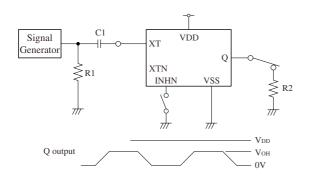
^{*2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

^{*2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

FUNCTIONAL DESCRIPTION

Standby Function

When INHN goes LOW, the oscillator stops and the oscillator output on Q becomes high impedance.


INHN	Q	Oscillator		
HIGH (or open)	f _O output frequency	Normal operation		
LOW	High impedance	Stopped		

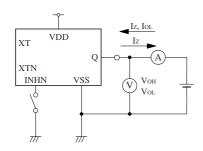
Power-saving Pull-up Resistor

The INHN pull-up resistance changes in response to the input level (HIGH or LOW). When INHN goes LOW (standby state), the pull-up resistance becomes large to reduce the current consumption during standby.

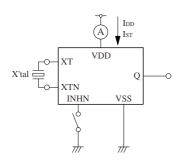
MEASUREMENT CIRCUITS

Measurement cct 1

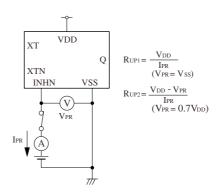
2Vp-p, 10MHz sine wave input signal

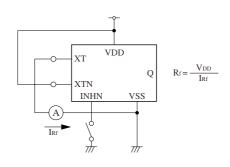

C1: 0.001µF

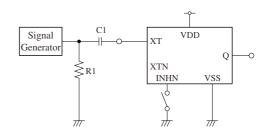
R1: 50Ω


R2: 219Ω (2.5V operation)

 275Ω (3.0V operation)


Measurement cct 2


Measurement cct 3

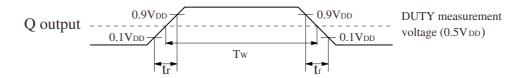

Measurement cct 4

Measurement cct 5

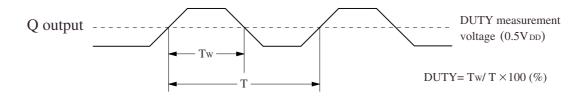
Measurement cct 6

2Vp-p, 10MHz sine wave input signal

C1: 0.001µF

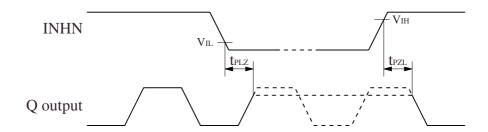

R1: 50Ω

Load cct 1



Switching Time Measurement Waveform

Output duty level, t_r, t_f



Output duty cycle

Output Enable/Disable Delay

when the device is in standby, the oscillator stops. When standby is released, the oscillator starts and stable oscillator output occurs after a short delay.

INHN input waveform $tr = tf \le 10ns$

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from NIPPON PRECISION CIRCUITS INC. (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0305CE 2004.11